Monograph
Advanced Books
https://doi.org/10.3897/ab.e119534 (12 Feb 2024)
https://doi.org/10.3897/ab.e119534 (12 Feb 2024)
Other versions:
- ContentsContents
- Book InfoBook Info
- CiteCite
- MetricsMetrics
- CommentComment
- RelatedRelated
- FigsFigs
- TabsTabs
- MapMap
- TaxaTaxa
- RefsRefs
- CitedCited
-
Book title
-
Acknowledgements
-
Preface
-
Contributors
-
1 Introduction
-
1.1 Towards a multisensor station for automated biodiversity monitoring
-
1.2 The test sites
-
1.2.1 Melbgarten, Bonn
-
1.2.2 Britz, Ecological research station of the Thünen Institute near Eberswalde
-
1.2.3 Energieberg Georgswerder, Hamburg
-
-
References
-
-
2 Smellscapes: automated monitoring of volatile organic compounds in ambient air
-
Abstract
-
2.1 Introduction
-
2.1.1 Volatile organic compounds
-
2.1.2 Ion mobility spectrometry
-
2.1.3 Aim & scope
-
-
2.2 Material and methods
-
2.2.1 Sampling location and plant community
-
2.2.2 Instrumentation
-
2.2.3 Housing and sample transfer
-
2.2.4 Sampling and time-resolved monitoring
-
2.2.5 In-house reference database
-
2.2.6 Targeted measurements of characteristic plants
-
2.2.7 Data evaluation
-
2.2.8 Database design
-
2.2.9 Meteorological data
-
2.2.10 Statistical analysis
-
-
2.3 Results
-
2.3.1 Automation & telemetry
-
2.3.2 Selective measurements of common plants
-
2.3.3 Detection of VOCs in ambient air using GC-IMS
-
2.3.4 Time-resolved monitoring of VOCs
-
2.3.5 Weekly and diurnal variation of VOCs in seasonal intervals
-
2.3.6 Correlation of eVOC/pVOC Concentration with meteorological data
-
-
2.4 Discussion
-
2.4.1 Robustness of measurements
-
2.4.2 GC-IMS for time resolved detection of VOCs
-
2.4.3 Differentiation of biogenic/plant related VOCs
-
2.4.4 Outlook
-
-
2.5 Conclusion
-
References
-
Appendix
-
A.1 Plant list Melbgarten
-
A.2 Reference substance database
-
A.3 Abbreviations
-
-
-
3 Plant metabarcoding of volumetric air samplers and malaise traps
-
Abstract
-
3.1 Introduction
-
3.2 Material and methods
-
3.2.1 Collection site considerations
-
3.2.2 Pollen trap sampler setup and programming
-
3.2.3 Pollen Metabarcoding: Quality assurance to avoid contamination
-
3.2.4 Pollen Metabarcoding: DNA extraction from plant traces in Malaise traps
-
3.2.5 Pollen Metabarcoding: DNA extraction from pollen material from the wind pollen trap
-
3.2.6 PCR: Barcode choice
-
3.2.7 PCR chemicals and conditions
-
3.2.8 NGS-Sequencing
-
3.2.9 Metabarcoding data pipeline
-
-
3.2 Results and discussion
-
References
-
-
4 Non-destructive DNA extraction and metabarcoding of arthropod bulk samples: a step-by-step protocol
-
Abstract
-
Keywords
-
4.1 Introduction
-
4.2 Laboratory protocol
-
4.2.1 Materials and reagents
-
4.2.2 Methods
-
-
4.3 Notes
-
4.4 Challenges and recommendations
-
4.5 Application and outlook
-
References
-
-
5 Development of an automated Malaise trap multisampler
-
Abstract
-
5.1 Introduction
-
5.1.1 Background
-
5.1.2 The automated AMMOD multisampler
-
-
5.2 The microcontroller
-
5.2.1 Controller code
-
-
5.3 The rotary mechanism
-
5.4 The stopping mechanisms
-
5.5 Additional sensors and modules
-
5.5.1 Additional sensors
-
5.5.2 External modules
-
-
5.6 User Interface
-
5.6.1 Manual use
-
5.6.2 Serial communication
-
-
5.7 Energy supply
-
5.8 Outlook
-
References
-
-
6 Bioacoustic data acquisition and species recognition
-
Abstract
-
6.1 Introduction
-
6.2 Material and methods
-
6.2.1 Sensor
-
6.2.2 Hardware
-
6.2.3 Software
-
6.2.4 Recording and analysis pipeline
-
-
6.3 Results
-
6.3.1 Preliminary inventory of bird species
-
6.3.2 Four-channel audio recordings
-
6.3.3 Ultrasonic recordings
-
6.3.4 Performance assessment
-
6.3.5 Raw classification results
-
-
6.4 Discussion
-
6.4.1 Importance of interdisciplinarity
-
6.4.2 Selection of the recording equipment
-
6.4.3 Use of four-channel recordings
-
6.4.4 Training and validation datasets
-
6.4.5 Interpretation of raw classification results
-
-
Acknowledgments
-
References
-
-
7 Directional Spectrogram (D-SPEC) and Signal Source Separation: software description and operational guide
-
7.1 Overview
-
7.2 D-SPEC Algorithm, Software Description
-
7.2.1 Parameter determination
-
7.2.2 Beam-forming setup
-
7.2.3 Data Processing
-
7.2.4 Beamforming and Calculating the D-Spec
-
-
7.3 Clustering Algorithm, Software Description
-
7.3.1 Parameters
-
7.3.2 Pre-processing
-
7.3.3 Clustering algorithm
-
-
7.4 Using the D-Spec clustering software
-
7.4.1 File preparation
-
7.4.2 Launching the program
-
7.4.3 Loading and saving parameters
-
7.4.4 Loading data
-
7.4.5 Setting time range
-
7.4.6 Computing and Plotting D-SPEC
-
7.4.7 D-SPEC parameters
-
7.4.8 Clustering and plotting clusters
-
7.4.9 Clustering parameters
-
7.4.10 Generating and Playing Time-Series
-
-
7.5 Neural Network Implementation of D-SPEC
-
7.5.1 Overview
-
7.5.2 Software implementation
-
-
References
-
-
8 Depth-aware Visual Monitoring
-
8.1 State of the art
-
8.2 Hardware
-
8.2.1 Design and specification
-
8.2.2 Challenges and limitations
-
-
8.3 Software
-
8.3.1 Control
-
8.3.2 Stereo processing
-
8.3.3 Animal localization
-
-
8.4 Workflows
-
8.5 Data quality
-
8.6 Outlook
-
References
-
-
9 The Base Station
-
9.1 Introduction
-
9.2 Power supply
-
9.3 Software
-
9.3.1 Software architecture
-
9.3.2 Communication with sensors
-
9.3.3 Configuration file
-
9.3.4 Maintenance flow
-
9.3.5 Design Space Exploration
-
-
9.4 Communication links
-
9.4.1 Internet connectivity
-
9.4.2 Sensor links
-
9.4.3 Weather and time data
-
-
9.5 Conclusions
-
References
-
-
10 Data management: connecting the AMMOD base station to the AMMOD data portal
-
Abstract
-
10.1 Introduction
-
10.2 Material and methods
-
10.2.1 Requirements
-
-
10.3 Results
-
10.4 Discussion
-
10.4.1 Possible storage space limitations and the NFDI4Biodiversity core storage solution
-
10.4.2 Maintenance of the system and bug/feedback report after the end of the project
-
10.4.3 Scalability of the service and critical aspects
-
10.4.4 Data archival and publication
-
-
Acknowledgments
-
Subscribe to email alerts for current Article's categories